RAW 264.7 co-cultured with ultra-high molecular weight polyethylene particles spontaneously differentiate into osteoclasts: an in vitro model of periprosthetic osteolysis.

نویسندگان

  • M Sartori
  • F Vincenzi
  • A Ravani
  • S Cepollaro
  • L Martini
  • K Varani
  • M Fini
  • M Tschon
چکیده

Wear-particle osteolysis affects prosthesis survival leading to implant loosening up to 70% of revisions. Therapeutic strategies are increasing, however alternative testing methods to experimentally evaluate such treatments are lacking. The aim of this study was to reproduce an in vitro osteolysis model recapitulating the events that, starting from the exposure of macrophages to polyethylene, lead to the establishment of osteoclastogenesis and inflammation. Responses to polyethylene, at 3 and 7 days, in a macrophage cell line, RAW 264.7, were determined by DNA quantification, immunofluorescence, pit assay, gene expression, cytokine production and NF-kB activation. Results showed that 3 days exposure to particles could induce a significant production of Tumor Necrosis Factor alpha (p < 0.0005) and Prostaglandin E2 (p < 0.005) compared to controls. Particles also induced macrophages to spontaneously differentiate into mature and active osteoclasts, in terms of identification of multinucleated cells by Phalloidin staining and by the analysis of osteoclast-specific gene markers. In particular, at 3 days polyethylene induced a significant up-regulation of Nuclear Factor of Activated T-cells, cytoplasmic 1, Receptor Activator of Nuclear factor Kappa-B and Receptor Activator of Nuclear Factor Kappa-B Ligand genes (p < 0.0005) compared to controls. At protein level, the particles induced a significant increase of Receptor Activator of Nuclear Factor Kappa-B Ligand at day 7 over controls (p < 0.0005). Osteoclasts were capable to resorb bone even in absence of differentiating factors. The possible mechanism, beside spontaneous osteoclastogenesis mediated by wear debris, was identified in an autocrine up-regulation of Receptor activator of nuclear factor kappa-B ligand gene expression and protein synthesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 510-520, 2017.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyethylene particles from a hip simulator cause (45)Ca release from cultured bone.

Periprosthetic osteolysis is a dominant factor in the success or failure of total hip prostheses. Polyethylene wear debris has been implicated in the process of bone resorption and subsequent implant loosening. The present study is the first to examine the effect of ultra high molecular weight polyethylene (UHMWPE) wear debris produced by a hip simulator on calvarial bone resorption in vitro. (...

متن کامل

Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis

BACKGROUND Periprosthetic osteolysis is a major cause of aseptic loosening in joint arthroplasty. This study investigates the impact of CT (calcitonin) deficiency and CT substitution under in-vivo circumstances on particle-induced osteolysis in Calca -/- mice. METHODS We used the murine calvarial osteolysis model based on ultra-high molecular weight polyethylene (UHMWPE) particles in 10 C57BL...

متن کامل

Anti-oxidation Treatment of Ultra High Molecular Weight Polyethylene Components to Decrease Periprosthetic Osteolysis: Evaluation of Osteolytic and Osteogenic Properties of Wear Debris Particles in a Murine Calvaria Model

Wear debris-induced osteolysis remains the greatest limitation of long-term success for total joint replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. To address oxidative degradation post-gamma irradiation, manufacturers are investigating the incorporation of antioxidants into PE resins. Similarly, larger molecular weight monomers have been developed to increase cros...

متن کامل

Lentivirus-mediated short hairpin RNA interference targeting TNF-alpha in macrophages inhibits particle-induced inflammation and osteolysis in vitro and in vivo

BACKGROUND Aseptic loosening is a significant impediment to joint implant longevity. Prosthetic wear particles are postulated to play a central role in the onset and progression of periprosthetic osteolysis, leading to aseptic loosening of the prosthesis. METHODS We investigated the inhibitory effects of a lentivirus-mediated short hairpin RNA that targets the TNF-alpha gene on the particle-i...

متن کامل

In vivo response to cross-linked polyethylene and polycarbonate-urethane particles.

This study was undertaken to examine macrophage response to polycarbonate-urethane, a proposed alternative material to polyethylene in acetabular components of total hip arthroplasty. Polyethylene wear debris from total joint replacements has been linked to osteolysis and implant lifespan. It has been shown in vitro, that polyethylene particles cleaned of endotoxin generate less of an inflammat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 105 2  شماره 

صفحات  -

تاریخ انتشار 2017